Part Number Hot Search : 
DC110 PT801 FBL2031 0000X BU150 2SA838 680MZ LC78645
Product Description
Full Text Search
 

To Download HYS72T1G242EP-3-C Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 July 2007
HYS72T1G242EP-[25F/2.5]-C HYS72T1G242EP-[3/3S/3.7]-C
240-Pin Dual Die Registered DDR2 SDRAM Modules RDIMM SDRAM RoHS Compliant
Internet Data Sheet
Rev. 1.0
Internet Data Sheet
HYS72T1G242EP-[25F/2.5/3/3S/3.7]-C Registerd DDR2 SDRAM Module
HYS72T1G242EP-[25F/2.5]-C, HYS72T1G242EP-[3/3S/3.7]-C Revision History: 2007-07, Rev. 1.0 Page All All Subjects (major changes since last revision) Adapted to internet version Final document
We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: techdoc@qimonda.com
qag_techdoc_rev400 / 3.2 QAG / 2006-08-07 07242007-LR08-OZC0
2
Internet Data Sheet
HYS72T1G242EP-[25F/2.5/3/3S/3.7]-C Registerd DDR2 SDRAM Module
1
Overview
This chapter gives an overview of the 1.8 V 240-Pin Dual Die Registered DDR2 SDRAM Modules with parity bit product family and describes its main characteristics.
1.1
Features
* * * * * * * * * * Programmable self refresh rate via EMRS2 setting Programmable partial array refresh via EMRS2 settings DCC enabling via EMRS2 setting All inputs and outputs SSTL_18 compatible Off-Chip Driver Impedance Adjustment (OCD) and On-Die Termination (ODT) Serial Presence Detect with E2PROM RDIMM Dimensions (nominal): 30 mm high, 133.35 mm wide Based on standard reference card layouts Raw Card "Z" All speed grades faster than DDR2-400 comply with DDR2-400 timing specifications. RoHS compliant products1)
* 240-Pin PC2-6400, PC2-5300 and PC2-4200 DDR2 SDRAM memory modules. * 1024M x72 module organization and 512M x4 chip organization * Registered DIMM Parity bit for address and control bus * 8 GByte modules built with stacked 2 Gbit (1Gbit Dual Dies) DDR2 SDRAMs in P-TFBGA-63 chipsize packages. * Standard Double-Data-Rate-Two Synchronous DRAMs (DDR2 SDRAM) with a single + 1.8 V ( 0.1 V) power supply * Programmable CAS Latencies (3, 4, 5, 6), Burst Length (4 & 8) * Auto Refresh (CBR) and Self Refresh
TABLE 1
Performance Table
Product Type Speed Code DRAM Speed Grade Speed Grade CAS-RCD-RP latencies Max. Clock Frequency -25F DDR2-800D PC2-6400 5-5-5 - 400 266 200 12.5 12.5 45 57.5 -2.5 DDR2-800E PC2-6400 6-6-6 400 333 266 200 15 15 45 60 -3 DDR2-667C PC2-5300 4-4-4 - 333 333 200 12 12 45 57 -3S -3.7 Unit
DDR2-667D DDR2-533C PC2-5300 5-5-5 - 333 266 200 15 15 45 60 PC2-4200 4-4-4 - 266 266 200 15 15 45 60
tCK
MHz MHz MHz MHz ns ns ns ns
fCK6 @CL5 fCK5 @CL4 fCK4 @CL3 fCK3 Min. RAS-CAS-Delay tRCD Min. Row Precharge Time tRP tRAS Min. Row Active Time Min. Row Cycle Time tRC
@CL6
1) RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment as defined in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January 2003. These substances include mercury, lead, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers.
Rev. 1.0, 2007-07 07242007-LR08-OZC0
3
Internet Data Sheet
HYS72T1G242EP-[25F/2.5/3/3S/3.7]-C Registerd DDR2 SDRAM Module
1.2
Description
distribution. This reduces capacitive loading to the system bus, but adds one cycle to the SDRAM timing. Decoupling capacitors are mounted on the PCB board. The DIMMs feature serial presence detect based on a serial E2PROM device using the 2-pin I2C protocol. The first 128 bytes are programmed with configuration data and the second 128 bytes are available to the customer.
The Qimonda HYS72T1G242EP-[25F/2.5/3//3S/3.7]-C module family are Registered DIMM (with parity) modules with 30 mm height based on DDR2 technology. DIMMs are available as ECC modules in 1024M x 72 (8 GB) organization and density, intended for mounting into 240-Pin connector sockets. The memory array is designed with stacked 2 Gbit (1Gbit Dual Dies) Double-Data-Rate-Two (DDR2) Synchronous DRAMs. All control and address signals are re-driven on the DIMM using register devices and a PLL for the clock
TABLE 2
Ordering Information for RoHS Compliant Products
Product Type1) PC2-6400 HYS72T1G242EP-2.5-C HYS72T1G242EP-25F-C PC2-5300 HYS72T1G242EP-3-C HYS72T1G242EP-3S-C PC2-4200 HYS72T1G242EP-3.7-C 8GB 4Rx4 PC2-4200P-444-12-ZZ 4 Rank, ECC 1Gbit (x 4)
1) All Product Type number end with a place code, designating the silicon die revision. Example: HYS72T1G242EP-3.7-C, indicating Rev. "C" dies are used for DDR2 SDRAM components. For all Qimonda DDR2 module and component nomenclature see Chapter 6 of this data sheet. 2) The Compliance Code is printed on the module label and describes the speed grade, for example "PC2-4200P-444-12-ZZ", where 4200P means Registered DIMM modules (with Parity Bit) with 4.26 GB/sec Module Bandwidth and "444-12" means Column Address Strobe (CAS) latency = 4, Row Column Delay (RCD) latency = 4 and Row Precharge (RP) latency = 4 using the latest JEDEC SPD Revision 1.2 and produced on the Raw Card "F"
Compliance Code2)
Description
SDRAM Technology 1Gbit (x 4) 1Gbit (x 4) 1Gbit (x 4) 1Gbit (x 4)
8GB 4Rx4 PC2-6400P-666-12-ZZ 8GB 4Rx4 PC2-6400P-555-12-ZZ 8GB 4Rx4 PC2-5300P-444-12-ZZ 8GB 4Rx4 PC2-5300P-555-12-ZZ
4 Rank, ECC 4 Rank, ECC 4 Rank, ECC 4 Rank, ECC
TABLE 3
Address Format
DIMM Density 8 GByte Module Organization 1024M x72 Memory Ranks 4 ECC/ Non-ECC ECC # of SDRAMs # of row/bank/column bits 36DDP1) 14/3/11 Raw Card Z
1) DDP Dual Die Package
TABLE 4
Components on Modules
Product Type1) HYS72T1G242EP DRAM Components HYB18T2G402CF DRAM Density 1 Gbit DRAM Organization 2 x 512M x 4
1) For a detailed description of all functionalities of the DRAM components on these modules see the component data sheet.
Rev. 1.0, 2007-07 07242007-LR08-OZC0
4
Internet Data Sheet
HYS72T1G242EP-[25F/2.5/3/3S/3.7]-C Registerd DDR2 SDRAM Module
2
2.1
Pin Configuration and Block Diagrams
Pin Configuration
and Table 7 respectively. The pin numbering is depicted in Figure 1.
This chapter contains the pin configuration and block diagrams.
The pin configuration of the Registered DDR2 SDRAM DIMM is listed by function in Table 5 (240 pins). The abbreviations used in columns Pin and Buffer Type are explained in Table 6
TABLE 5
Pin Configuration of RDIMM
Pin No. Clock Signals 185 186 CK0 CK0 I I SSTL SSTL Clock Signal CK0, Complementary Clock Signal CK0 The system clock inputs. All address and command lines are sampled on the cross point of the rising edge of CK and the falling edge of CK. A Delay Locked Loop (DLL) circuit is driven from the clock inputs and output timing for read operations is synchronized to the input clock. Clock Enables 1:0 Activates the DDR2 SDRAM CK signal when HIGH and deactivates the CK signal when LOW. By deactivating the clocks, CKE0 initiates the Power Down Mode or the Self Refresh Mode. Note: 2-Ranks module Not Connected Note: 1-Rank module Chip Select Enables the associated DDR2 SDRAM command decoder when LOW and disables the command decoder when HIGH. When the command decoder is disabled, new commands are ignored but previous operations continue. Rank 0 is selected by S0 Rank 1 is selected by S1 The input signals also disable all outputs (except CKE and ODT) of the register(s) on the DIMM when both inputs are high. When S is HIGH, all register outputs (except CK, ODT and Chip select) remain in the previous state. Note: 2-Ranks module Not Connected Note: 1-Rank module Name Pin Type Buffer Type Function
52 171
CKE0 CKE1
I I
SSTL SSTL
NC Control Signals 193 76 S0 S1
NC
--
I I
SSTL SSTL
NC
NC
--
Rev. 1.0, 2007-07 07242007-LR08-OZC0
5
Internet Data Sheet
HYS72T1G242EP-[25F/2.5/3/3S/3.7]-C Registerd DDR2 SDRAM Module
Pin No. 220
Name S2 NC
Pin Type I NC I NC I I I I
Buffer Type SSTL
Function
Rank 2 is selected by S2 -- SSTL Rank 3 is selected by S3 NC 192 74 73 18 RAS CAS WE RESET -- SSTL SSTL SSTL CMOS Not Connected Note: 1-Rank, 2-Ranks module Row Address Strobe (RAS), Column Address Strobe (CAS), Write Enable (WE) When sampled at the cross point of the rising edge of CK, and falling edge of CK, RAS, CAS and WE define the operation to be executed by the SDRAM. Register Reset The RESET pin is connected to the RST pin on the register and to the OE pin on the PLL. When LOW, all register outputs will be driven LOW and the PLL clocks to the DRAMs and the register(s) will be set to lowlevel. The PLL will remain synchronized with the input clock. Bank Address Bus 1:0 Selects internal SDRAM memory bank Bank Address Bus 2 Greater than 512Mb DDR2 SDRAMS Not Connected Less than 1Gb DDR2 SDRAMS Address Bus 12:0, Address Signal 10/AutoPrecharge During a Bank Activate command cycle, defines the row address when sampled at the crosspoint of the rising edge of CK and falling edge of CK. During a Read or Write command cycle, defines the column address when sampled at the cross point of the rising edge of CK and falling edge of CK. In addition to the column address, AP is used to invoke autoprecharge operation at the end of the burst read or write cycle. If AP is HIGH, autoprecharge is selected and BA[2:0] defines the bank to be precharged. If AP is LOW, autoprecharge is disabled. During a Precharge command cycle, AP is used in conjunction with BA[2:0] to control which bank(s) to precharge. If AP is HIGH, all banks will be precharged regardless of the state of BA[2:0] inputs. If AP is LOW, then BA[2:0] are used to define which bank to precharge. Not Connected Note: 1-Rank, 2-Ranks module
221
S3
Address Signals 71 190 54 BA0 BA1 BA2 NC 188 183 63 182 61 60 180 58 179 177 70 57 176 196 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 AP A11 A12 A13 NC I I I I I I I I I I I I I I I I I I I NC SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL -- Address Signal 13 Not Connected Note: Non CA parity modules based on 256 Mbit component
Rev. 1.0, 2007-07 07242007-LR08-OZC0
6
Internet Data Sheet
HYS72T1G242EP-[25F/2.5/3/3S/3.7]-C Registerd DDR2 SDRAM Module
Pin No. 174
Name A14 NC
Pin Type I NC I NC
Buffer Type SSTL -- SSTL --
Function Address Signal 14 Note: CA Parity module Not Connected Note: Non CA parity module. Less than 1 GBit per DRAM die. Address Signal 14 Note: CA Parity module Not Connected Note: Non CA parity module. Less than 1 GBit per DRAM die. Data Bus 63:0 Data Input/Output pins
173
A15 NC
Data Signals 3 4 9 10 122 123 128 129 12 13 21 22 131 132 140 141 24 25 30 31 143 144 149 150 33 34 39 40 152 153 158 DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 DQ8 DQ9 DQ10 DQ11 DQ12 DQ13 DQ14 DQ15 DQ16 DQ17 DQ18 DQ19 DQ20 DQ21 DQ22 DQ23 DQ24 DQ25 DQ26 DQ27 DQ28 DQ29 DQ30 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL
Rev. 1.0, 2007-07 07242007-LR08-OZC0
7
Internet Data Sheet
HYS72T1G242EP-[25F/2.5/3/3S/3.7]-C Registerd DDR2 SDRAM Module
Pin No. 159 80 81 86 87 199 200 205 206 89 90 95 96 208 209 214 215 98 99 107 108 217 218 226 227 110 111 116 117 229 230 235 236 Check Bits 42 43 48 49
Name DQ31 DQ32 DQ33 DQ34 DQ35 DQ36 DQ37 DQ38 DQ39 DQ40 DQ41 DQ42 DQ43 DQ44 DQ45 DQ46 DQ47 DQ48 DQ49 DQ50 DQ51 DQ52 DQ53 DQ54 DQ55 DQ56 DQ57 DQ58 DQ59 DQ60 DQ61 DQ62 DQ63 CB0 CB1 CB2 CB3
Pin Type I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O
Buffer Type SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL
Function Data Bus 63:0 Data Input/Output pins
Check Bits 7:0 Check Bit Input / Output pins Note: NC on Non-ECC module
Rev. 1.0, 2007-07 07242007-LR08-OZC0
8
Internet Data Sheet
HYS72T1G242EP-[25F/2.5/3/3S/3.7]-C Registerd DDR2 SDRAM Module
Pin No. 161 162 167 168 Data Strobe Bus 7 6 16 15 28 27 37 36 84 83 93 92 105 104 114 113 46 45 125 126 134 135 146 147 155 156 202 203 211 212 223 224 232
Name CB4 CB5 CB6 CB7 DQS0 DQS0 DQS1 DQS1 DQS2 DQS2 DQS3 DQS3 DQS4 DQS4 DQS5 DQS5 DQS6 DQS6 DQS7 DQS7 DQS8 DQS8 DQS9 DQS9 DQS10 DQS10 DQS11 DQS11 DQS12 DQS12 DQS13 DQS13 DQS14 DQS14 DQS15 DQS15 DQS16
Pin Type I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O
Buffer Type SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL
Function Check Bits 7:0 Check Bit Input / Output pins Note: NC on Non-ECC module
Data Strobes 17:0 The data strobes, associated with one data byte, sourced with data transfers. In Write mode, the data strobe is sourced by the controller and is centered in the data window. In Read mode the data strobe is sourced by the DDR2 SDRAM and is sent at the leading edge of the data window. DQS signals are complements, and timing is relative to the crosspoint of respective DQS and DQS. If the module is to be operated in single ended strobe mode, all DQS signals must be tied on the system board to VSS through a 20 to 10 k resistor and DDR2 SDRAM mode registers programmed appropriately. Note: See block diagram for corresponding DQ signals
Rev. 1.0, 2007-07 07242007-LR08-OZC0
9
Internet Data Sheet
HYS72T1G242EP-[25F/2.5/3/3S/3.7]-C Registerd DDR2 SDRAM Module
Pin No. 233 164 165 Data Mask 125 134 146 155 202 211 223 232 164 EEPROM 120 119
Name DQS16 DQS17 DQS17 DM0 DM1 DM2 DM3 DM4 DM5 DM6 DM7 DM8 SCL SDA
Pin Type I/O I/O I/O I I I I I I I I I I I/O
Buffer Type SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL CMOS OD
Function Data Strobes 17:0
Data Masks 8:0 The data write masks, associated with one data byte. In Write mode, DM operates as a byte mask by allowing input data to be written if it is LOW but blocks the write operation if it is HIGH. In Read mode, DM lines have no effect. Note: x8 based module
Serial Bus Clock This signal is used to clock data into and out of the SPD EEPROM. Serial Bus Data This is a bidirectional pin used to transfer data into or out of the SPD EEPROM. A resistor must be connected from SDA to VDDSPD on the motherboard to act as a pull-up. Serial Address Select Bus 2:0 These signals are tied at the system planar to either VSS or VDDSPD to configure the serial SPD EEPROM address range
239 240 101 Parity 55 68 Power Supplies 1 238
SA0 SA1 SA2 ERR_OUT PAR_IN
I I I O I
CMOS CMOS CMOS CMOS CMOS
Parity bits Note: Only for modules with parity bit for address and control bus. Not connected on non-parity registered modules. I/O Reference Voltage Reference voltage for the SSTL-18 inputs. EEPROM Power Supply Serial EEPROM positive power supply, wired to a separated power pin at the connector which supports from 1.7 Volt to 3.6 Volt. I/O Driver Power Supply Power and ground for the DDR SDRAM Power Supply Power and ground for the DDR SDRAM
VREF VDDSPD
AI PWR
-- --
51, 56, 62, 72, 75, 78, 170, 175, 181, 191, 194
VDDQ
PWR
--
53, 59, 64, 67, 69, VDD 172, 178, 184, 187, 189, 197
PWR
--
Rev. 1.0, 2007-07 07242007-LR08-OZC0
10
Internet Data Sheet
HYS72T1G242EP-[25F/2.5/3/3S/3.7]-C Registerd DDR2 SDRAM Module
Pin No.
Name
Pin Type GND
Buffer Type --
Function Ground Plane Power and ground for the DDR SDRAM
2, 5, 8, 11, 14, 17, VSS 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 65, 66, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169, 198, 201, 204, 207, 210, 213, 216, 219, 222, 225, 228, 231, 234, 237 Other Pins 19, 102, 137, 138, 195 77 NC ODT0 ODT1
NC I I
-- SSTL SSTL
Not connected Pins not connected on Qimonda RDIMM's On-Die Termination Control 1:0 Asserts on-die termination for DQ, DM, DQS, and DQS signals if enabled via the DDR2 SDRAM mode register. Note: 2-Ranks module Note: 1-Rank modules
NC
NC
--
TABLE 6
Abbreviations for Buffer Type
Abbreviation SSTL CMOS OD Description Serial Stub Terminated Logic (SSTL_18) CMOS Levels Open Drain. The corresponding pin has 2 operational states, active low and tristate, and allows multiple devices to share as a wire-OR.
Rev. 1.0, 2007-07 07242007-LR08-OZC0
11
Internet Data Sheet
HYS72T1G242EP-[25F/2.5/3/3S/3.7]-C Registerd DDR2 SDRAM Module
TABLE 7
Abbreviations for Pin Type
Abbreviation I O I/O AI PWR GND NU NC Description Standard input-only pin. Digital levels. Output. Digital levels. I/O is a bidirectional input/output signal. Input. Analog levels. Power Ground Not Usable Not Connected
Rev. 1.0, 2007-07 07242007-LR08-OZC0
12
Internet Data Sheet
HYS72T1G242EP-[25F/2.5/3/3S/3.7]-C Registerd DDR2 SDRAM Module
FIGURE 1
Pin Configuration for RDIMM (240 pins)
Rev. 1.0, 2007-07 07242007-LR08-OZC0
13
Internet Data Sheet
HYS72T1G242EP-[25F/2.5/3/3S/3.7]-C Registerd DDR2 SDRAM Module
3
3.1
Electrical Characteristics
Absolute Maximum Ratings
TABLE 8
Absolute Maximum Ratings
This chapter lists the electrical characteristics.
Caution is needed not to exceed absolute maximum ratings of the DRAM device listed in Table 8 at any time.
Symbol
Parameter
Rating Min. Max. +2.3 +2.3 +2.3 +2.3
Unit
Notes
Storage Temperature -55 +100 1) When VDD and VDDQ and VDDL are less than 500 mV; VREF may be equal to or less than 300 mV.
2) Storage Temperature is the case surface temperature on the center/top side of the DRAM.
VDD VDDQ VDDL VIN, VOUT TSTG
Voltage on VDD pin relative to VSS Voltage on VDDQ pin relative to VSS Voltage on VDDL pin relative to VSS Voltage on any pin relative to VSS
-1.0 -0.5 -0.5 -0.5
V V V V C
1) 1)2) 1)2) 1) 1)2)
Attention: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
TABLE 9
DRAM Component Operating Temperature Range
Symbol Parameter Rating Min. Max. 95 C
1)2)3)4)
Unit
Notes
TOPER
Operating Temperature
0
1) Operating Temperature is the case surface temperature on the center / top side of the DRAM. 2) The operating temperature range are the temperatures where all DRAM specification will be supported. During operation, the DRAM case temperature must be maintained between 0 - 95 C under all other specification parameters. 3) Above 85 C the Auto-Refresh command interval has to be reduced to tREFI= 3.9 s 4) When operating this product in the 85 C to 95 C TCASE temperature range, the High Temperature Self Refresh has to be enabled by setting EMR(2) bit A7 to "1". When the High Temperature Self Refresh is enabled there is an increase of IDD6 by approximately 50%
Rev. 1.0, 2007-07 07242007-LR08-OZC0
14
Internet Data Sheet
HYS72T1G242EP-[25F/2.5/3/3S/3.7]-C Registerd DDR2 SDRAM Module
3.2
DC Operating Conditions
TABLE 10
Operating Conditions
This chapter contains the DC operating conditions tables.
Parameter
Symbol
Values Min. Max. +65 +95 +100 +105 90 95
Unit
Note
Operating temperature (ambient) DRAM Case Temperature Storage Temperature Barometric Pressure (operating & storage) Operating Humidity (relative) Storage Humidity (without condensation)
1) 2) 3) 4)
TOPR TCASE TSTG
PBar
0 0 - 50 +69 10 5
C C C kPa % %
5) 1)2)3)4)
HOPR HSTG
DRAM Component Case Temperature is the surface temperature in the center on the top side of any of the DRAMs. Within the DRAM Component Case Temperature Range all DRAM specifications will be supported Above 85 C DRAM Case Temperature the Auto-Refresh command interval has to be reduced to tREFI = 3.9 s When operating this product in the 85 C to 95 C TCASE temperature range, the High Temperature Self Refresh has to be enabled by setting EMR(2) bit A7 to "1". When the High Temperature Self Refresh is enabled there is an increase of IDD6 by approximately 50%. 5) Up to 3000 m.
TABLE 11
Supply Voltage Levels and DC Operating Conditions
Parameter Symbol Values Min. Device Supply Voltage Output Supply Voltage Input Reference Voltage SPD Supply Voltage DC Input Logic High DC Input Logic Low Typ. 1.8 1.8 0.5 x VDDQ -- -- -- Max. 1.9 1.9 0.51 x VDDQ 3.6 V V V V V V
3) 1) 2)
Unit
Notes
-5 -- 5 A In / Output Leakage Current 1) Under all conditions, VDDQ must be less than or equal to VDD 2) Peak to peak AC noise on VREF may not exceed 2% VREF (DC).VREF is also expected to track noise in VDDQ. 3) Input voltage for any connector pin under test of 0 V VIN VDDQ + 0.3 V; all other pins at 0 V. Current is per pin
VDD VDDQ VREF VDDSPD VIH(DC) VIL (DC) IL
1.7 1.7 0.49 x VDDQ 1.7
VREF + 0.125
- 0.30
VDDQ + 0.3 VREF - 0.125
Rev. 1.0, 2007-07 07242007-LR08-OZC0
15
Internet Data Sheet
HYS72T1G242EP-[25F/2.5/3/3S/3.7]-C Registerd DDR2 SDRAM Module
3.3
Timing Characteristics
This chapter describes the timing characteristics.
3.3.1
Speed Grade Definitions
All Speed grades faster than DDR2-400B comply with DDR2-400B timing specifications(tCK = 5ns with tRAS = 40ns). Speed Grade Definitions:Table 12 for DDR2-800E , Table 13 for DDR2-667D, Table 14 for DDR2-533C
TABLE 12
Speed Grade Definition Speed Bins for DDR2-800
Speed Grade QAG Sort Name CAS-RCD-RP latencies Parameter Clock Frequency @ CL = 3 @ CL = 4 @ CL = 5 @ CL = 6 Row Active Time Row Cycle Time RAS-CAS-Delay Row Precharge Time Symbol DDR2-800D -2.5F 5-5-5 Min. 5 3.75 2.5 2.5 45 57.5 12.5 12.5 Max. 8 8 8 8 70000 -- -- -- DDR2-800E -2.5 6-6-6 Min. 5 3.75 3 2.5 45 60 15 15 Max. 8 8 8 8 70000 -- -- -- Unit Note
tCK
-- ns ns ns ns ns ns ns ns
1)2)3)4) 1)2)3)4) 1)2)3)4) 1)2)3)4) 1)2)3)4)5) 1)2)3)4) 1)2)3)4) 1)2)3)4)
tCK tCK tCK tCK tRAS tRC tRCD tRP
1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. Timings are further guaranteed for normal OCD drive strength (EMRS(1) A1 = 0) 2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode. 3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 4) The output timing reference voltage level is VTT. 5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI.
TABLE 13
Speed Grade Definition Speed Bins for DDR2-667
Speed Grade QAG Sort Name CAS-RCD-RP latencies Parameter Clock Frequency @ CL = 3 @ CL = 4 @ CL = 5 Symbol DDR2-667C -3 4-4-4 Min. 5 3 3 Max. 8 8 8 DDR2-667D -3S 5-5-5 Min. 5 3.75 3 Max. 8 8 8 Unit Notes
tCK
-- ns ns ns
1)2)3)4) 1)2)3)4) 1)2)3)4)
tCK tCK tCK
Rev. 1.0, 2007-07 07242007-LR08-OZC0
16
Internet Data Sheet
HYS72T1G242EP-[25F/2.5/3/3S/3.7]-C Registerd DDR2 SDRAM Module
Speed Grade QAG Sort Name CAS-RCD-RP latencies Parameter Row Active Time Row Cycle Time RAS-CAS-Delay Row Precharge Time Symbol DDR2-667C -3 4-4-4 Min. 45 57 12 12 Max. 70000 -- -- -- DDR2-667D -3S 5-5-5 Min. 45 60 15 15 Max. 70000 -- -- -- Unit Notes
tCK
-- ns ns ns ns
1)2)3)4)5) 1)2)3)4) 1)2)3)4) 1)2)3)4)
tRAS tRC tRCD tRP
1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. Timings are further guaranteed for normal OCD drive strength (EMRS(1) A1 = 0) . 2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode 3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 4) The output timing reference voltage level is VTT. 5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI.
TABLE 14
Speed Grade Definition Speed Bins for DDR2-533C
Speed Grade QAG Sort Name CAS-RCD-RP latencies Parameter Clock Frequency @ CL = 3 @ CL = 4 @ CL = 5 Row Active Time Row Cycle Time RAS-CAS-Delay Row Precharge Time Symbol DDR2-533C -3.7 4-4-4 Min. 5 3.75 3.75 45 60 15 15 Max. 8 8 8 70000 -- -- -- Unit Note
tCK
-- ns ns ns ns ns ns ns
1)2)3)4) 1)2)3)4) 1)2)3)4) 1)2)3)4)5) 1)2)3)4) 1)2)3)4) 1)2)3)4)
tCK tCK tCK tRAS tRC tRCD tRP
1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.Timings are further guaranteed for normal OCD drive strength (EMRS(1) A1 = 0) 2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode. 3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 4) The output timing reference voltage level is VTT. 5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI.
Rev. 1.0, 2007-07 07242007-LR08-OZC0
17
Internet Data Sheet
HYS72T1G242EP-[25F/2.5/3/3S/3.7]-C Registerd DDR2 SDRAM Module
3.3.2
Component AC Timing Parameters
TABLE 15
DRAM Component Timing Parameter by Speed Grade - DDR2-800
Timing Parameters:Table 15 for DDR2-800E, Table 16 for DDR2-667D, Table 17 for DDR2-533C
Parameter
Symbol
DDR2-800 Min. Max. +400 -- 0.52 8000 -- 0.52 -- -- -- -- +350 -- -- 200 + 0.25 -- -- -- -- -- __
Unit
Notes1)2)3)4)5)6)
7)8)
DQ output access time from CK / CK CAS to CAS command delay Average clock high pulse width Average clock period CKE minimum pulse width ( high and low pulse width) Average clock low pulse width
tAC tCCD tCH.AVG tCK.AVG tCKE
-400 2 0.48 2500 3 0.48 WR + tnRP
ps nCK
9)
tCK.AVG
ps nCK
10)11) 10)11) 12)
tCL.AVG Auto-Precharge write recovery + precharge time tDAL Minimum time clocks remain ON after CKE tDELAY
asynchronously drops LOW DQ and DM input hold time
tCK.AVG
nCK ns ps
10)11) 13)14)
tIS + tCK .AVG + tIH
125 0.35 -350 0.35 0.35 -- - 0.25 50 0.2 0.2 35 45 Min(tCH.ABS, tCL.ABS) -- 250 0.6 175 2 x tAC.MIN
tDH.BASE DQ and DM input pulse width for each input tDIPW DQS output access time from CK / CK tDQSCK DQS input high pulse width tDQSH DQS input low pulse width tDQSL DQS-DQ skew for DQS & associated DQ signals tDQSQ DQS latching rising transition to associated clock tDQSS
edges
19)20)15)
tCK.AVG
ps
9)
tCK.AVG tCK.AVG
ps
16) 17)
tCK.AVG
ps
tDS.BASE DQS falling edge hold time from CK tDSH DQS falling edge to CK setup time tDSS Four Activate Window for 1KB page size products tFAW Four Activate Window for 2KB page size products tFAW CK half pulse width tHP
DQ and DM input setup time
18)19)20) 17) 17) 35) 35) 21)
tCK.AVG tCK.AVG
ns ns ps ps ps
tHZ Address and control input hold time tIH.BASE Control & address input pulse width for each input tIPW Address and control input setup time tIS.BASE DQ low impedance time from CK/CK tLZ.DQ DQS/DQS low-impedance time from CK / CK tLZ.DQS MRS command to ODT update delay tMOD Mode register set command cycle time tMRD tOIT OCD drive mode output delay DQ/DQS output hold time from DQS tQH
Data-out high-impedance time from CK / CK
tAC.MAX
-- -- -- tAC.MAX
9)22) 23)25)
tCK.AVG
ps ps ps ns nCK ns ps
35) 26) 24)25) 9)22) 9)22) 35)
tAC.MIN
0 2 0
tAC.MAX
12 -- 12 --
tHP - tQHS
Rev. 1.0, 2007-07 07242007-LR08-OZC0
18
Internet Data Sheet
HYS72T1G242EP-[25F/2.5/3/3S/3.7]-C Registerd DDR2 SDRAM Module
Parameter
Symbol
DDR2-800 Min. Max. 300 7.8 3.9 -- -- 1.1 0.6 -- -- -- -- 0.6 -- -- -- -- -- -- --
Unit
Notes1)2)3)4)5)6)
7)8)
DQ hold skew factor Average periodic refresh Interval Auto-Refresh to Active/Auto-Refresh command period Precharge-All (8 banks) command period Read preamble Read postamble Active to active command period for 1KB page size products Active to active command period for 2KB page size products Internal Read to Precharge command delay Write preamble Write postamble Write recovery time Internal write to read command delay Exit power down to read command Exit active power-down mode to read command (slow exit, lower power) Exit precharge power-down to any valid command (other than NOP or Deselect) Exit self-refresh to a non-read command Exit self-refresh to read command Write command to DQS associated clock edges
tQHS tREFI tRFC tRP tRPRE tRPST tRRD tRRD tRTP tWPRE tWPST tWR tWTR tXARD tXARDS tXP tXSNR tXSRD
WL
-- -- -- 127.5
ps s s ns ns
27) 28)29) 29)30) 31)
tRP + 1 x tCK
0.9 0.4 7.5 10 7.5 0.35 0.4 15 7.5 2 8 - AL 2
tCK.AVG tCK.AVG
ns ns ns
32)33) 32)34) 35)
35)
35)
tCK.AVG tCK.AVG
ns ns nCK nCK nCK ns nCK nCK
35) 35) 35)36)
tRFC +10
200 RL - 1
1) For details and notes see the relevant Qimonda component data sheet 2) VDDQ = 1.8 V 0.1V; VDD = 1.8 V 0.1 V. 3) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. 4) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. 5) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode. 6) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 7) The output timing reference voltage level is VTT. 8) New units, `tCK.AVG` and `nCK`, are introduced in DDR2-667 and DDR2-800. Unit `tCK.AVG` represents the actual tCK.AVG of the input clock under operation. Unit `nCK` represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2-400 and DDR2-533, `tCK` is used for both concepts. Example: tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command may be registered at Tm + 2, even if (Tm + 2 - Tm) is 2 x tCK.AVG + tERR.2PER(Min). 9) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(6-10per) of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2-667 SDRAM has tERR(6-10PER).MIN = - 272 ps and tERR(6- 10PER).MAX = + 293 ps, then tDQSCK.MIN(DERATED) = tDQSCK.MIN - tERR(6-10PER).MAX = - 400 ps - 293 ps = - 693 ps and tDQSCK.MAX(DERATED) = tDQSCK.MAX - tERR(6-10PER).MIN = 400 ps + 272 ps = + 672 ps. Similarly, tLZ.DQ for DDR2-667 derates to tLZ.DQ.MIN(DERATED) = - 900 ps - 293 ps = - 1193 ps and tLZ.DQ.MAX(DERATED) = 450 ps + 272 ps = + 722 ps. (Caution on the MIN/MAX usage!) 10) Input clock jitter spec parameter. These parameters are referred to as 'input clock jitter spec parameters' and these parameters apply to DDR2-667 and DDR2-800 only. The jitter specified is a random jitter meeting a Gaussian distribution.
Rev. 1.0, 2007-07 07242007-LR08-OZC0
19
Internet Data Sheet
HYS72T1G242EP-[25F/2.5/3/3S/3.7]-C Registerd DDR2 SDRAM Module
11) These parameters are specified per their average values, however it is understood that the relationship between the average timing and the absolute instantaneous timing holds all the times (min. and max of SPEC values are to be used for calculations ). 12) tCKE.MIN of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during the time period of tIS + 2 x tCK + tIH. 13) DAL = WR + RU{tRP(ns) / tCK(ns)}, where RU stands for round up. WR refers to the tWR parameter stored in the MRS. For tRP, if the result of the division is not already an integer, round up to the next highest integer. tCK refers to the application clock period. Example: For DDR2-533 at tCK = 3.75 ns with tWR programmed to 4 clocks. tDAL = 4 + (15 ns / 3.75 ns) clocks = 4 + (4) clocks = 8 clocks. 14) tDAL.nCK = WR [nCK] + tnRP.nCK = WR + RU{tRP [ps] / tCK.AVG[ps] }, where WR is the value programmed in the EMR. 15) Input waveform timing tDH with differential data strobe enabled MR[bit10] = 0, is referenced from the differential data strobe crosspoint to the input signal crossing at the VIH.DC level for a falling signal and from the differential data strobe crosspoint to the input signal crossing at the VIL.DC level for a rising signal applied to the device under test. DQS, DQS signals must be monotonic between VIL.DC.MAX and VIH.DC.MIN. See Figure 3. 16) tDQSQ: Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output slew rate mismatch between DQS / DQS and associated DQ in any given cycle. 17) These parameters are measured from a data strobe signal ((L/U/R)DQS / DQS) crossing to its respective clock signal (CK / CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC, etc.), as these are relative to the clock signal crossing. That is, these parameters should be met whether clock jitter is present or not. 18) Input waveform timing tDS with differential data strobe enabled MR[bit10] = 0, is referenced from the input signal crossing at the VIH.AC level to the differential data strobe crosspoint for a rising signal, and from the input signal crossing at the VIL.AC level to the differential data strobe crosspoint for a falling signal applied to the device under test. DQS, DQS signals must be monotonic between Vil(DC)MAX and Vih(DC)MIN. See Figure 3. 19) If tDS or tDH is violated, data corruption may occur and the data must be re-written with valid data before a valid READ can be executed. 20) These parameters are measured from a data signal ((L/U)DM, (L/U)DQ0, (L/U)DQ1, etc.) transition edge to its respective data strobe signal ((L/U/R)DQS / DQS) crossing. 21) tHP is the minimum of the absolute half period of the actual input clock. tHP is an input parameter but not an input specification parameter. It is used in conjunction with tQHS to derive the DRAM output timing tQH. The value to be used for tQH calculation is determined by the following equation; tHP = MIN (tCH.ABS, tCL.ABS), where, tCH.ABS is the minimum of the actual instantaneous clock high time; tCL.ABS is the minimum of the actual instantaneous clock low time. 22) tHZ and tLZ transitions occur in the same access time as valid data transitions. These parameters are referenced to a specific voltage level which specifies when the device output is no longer driving (tHZ), or begins driving (tLZ) . 23) Input waveform timing is referenced from the input signal crossing at the VIL.DC level for a rising signal and VIH.DC for a falling signal applied to the device under test. See Figure 4. 24) Input waveform timing is referenced from the input signal crossing at the VIH.AC level for a rising signal and VIL.AC for a falling signal applied to the device under test. See Figure 4. 25) These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge to its respective clock signal (CK / CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC, etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these parameters should be met whether clock jitter is present or not. 26) tQH = tHP - tQHS, where: tHP is the minimum of the absolute half period of the actual input clock; and tQHS is the specification value under the max column. {The less half-pulse width distortion present, the larger the tQH value is; and the larger the valid data eye will be.} Examples: 1) If the system provides tHP of 1315 ps into a DDR2-667 SDRAM, the DRAM provides tQH of 975 ps minimum. 2) If the system provides tHP of 1420 ps into a DDR2-667 SDRAM, the DRAM provides tQH of 1080 ps minimum. 27) tQHS accounts for: 1) The pulse duration distortion of on-chip clock circuits, which represents how well the actual tHP at the input is transferred to the output; and 2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next transition, both of which are independent of each other, due to data pin skew, output pattern effects, and pchannel to n-channel variation of the output drivers. 28) The Auto-Refresh command interval has be reduced to 3.9 s when operating the DDR2 DRAM in a temperature range between 85 C and 95 C. 29) 0 C TCASE 85 C 30) 85 C < TCASE 95 C 31) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device. 32) tRPST end point and tRPRE begin point are not referenced to a specific voltage level but specify when the device output is no longer driving (tRPST), or begins driving (tRPRE). Figure 2 shows a method to calculate these points when the device is no longer driving (tRPST), or begins driving (tRPRE) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the calculation is consistent.
Rev. 1.0, 2007-07 07242007-LR08-OZC0
20
Internet Data Sheet
HYS72T1G242EP-[25F/2.5/3/3S/3.7]-C Registerd DDR2 SDRAM Module
33) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.PER of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2-667 SDRAM has tJIT.PER.MIN = - 72 ps and tJIT.PER.MAX = + 93 ps, then tRPRE.MIN(DERATED) = tRPRE.MIN + tJIT.PER.MIN = 0.9 x tCK.AVG - 72 ps = + 2178 ps and tRPRE.MAX(DERATED) = tRPRE.MAX + tJIT.PER.MAX = 1.1 x tCK.AVG + 93 ps = + 2843 ps. (Caution on the MIN/MAX usage!). 34) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.DUTY of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2-667 SDRAM has tJIT.DUTY.MIN = - 72 ps and tJIT.DUTY.MAX = + 93 ps, then tRPST.MIN(DERATED) = tRPST.MIN + tJIT.DUTY.MIN = 0.4 x tCK.AVG - 72 ps = + 928 ps and tRPST.MAX(DERATED) = tRPST.MAX + tJIT.DUTY.MAX = 0.6 x tCK.AVG + 93 ps = + 1592 ps. (Caution on the MIN/MAX usage!). 35) For these parameters, the DDR2 SDRAM device is characterized and verified to support tnPARAM = RU{tPARAM / tCK.AVG}, which is in clock cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP = RU{tRP / tCK.AVG}, which is in clock cycles, if all input clock jitter specifications are met. This means: For DDR2-667 5-5-5, of which tRP = 15 ns, the device will support tnRP = RU{tRP / tCK.AVG} = 5, i.e. as long as the input clock jitter specifications are met, Precharge command at Tm and Active command at Tm + 5 is valid even if (Tm + 5 - Tm) is less than 15 ns due to input clock jitter. 36) tWTR is at lease two clocks (2 x tCK) independent of operation frequency.
TABLE 16
DRAM Component Timing Parameter by Speed Grade - DDR2-667
Parameter Symbol DDR2-667 Min. DQ output access time from CK / CK CAS to CAS command delay Average clock high pulse width Average clock period CKE minimum pulse width ( high and low pulse width) Average clock low pulse width Max. +450 -- 0.52 8000 -- 0.52 -- -- -- -- +400 -- -- 240 + 0.25 -- -- -- -- -- __ ps nCK
9)
Unit
Notes1)2)3)4)5)6)
7)8)
tAC tCCD tCH.AVG tCK.AVG tCKE
-450 2 0.48 3000 3 0.48 WR + tnRP
tCK.AVG
ps nCK
10)11)
12)
tCL.AVG Auto-Precharge write recovery + precharge time tDAL Minimum time clocks remain ON after CKE tDELAY
asynchronously drops LOW DQ and DM input hold time
tCK.AVG
nCK ns ps
10)11) 13)14)
tIS + tCK .AVG + tIH
175 0.35 -400 0.35 0.35 -- - 0.25 100 0.2 0.2 37.5 50 Min(tCH.ABS, tCL.ABS) -- 275
tDH.BASE DQ and DM input pulse width for each input tDIPW DQS output access time from CK / CK tDQSCK DQS input high pulse width tDQSH DQS input low pulse width tDQSL DQS-DQ skew for DQS & associated DQ signals tDQSQ DQS latching rising transition to associated clock tDQSS
edges
19)20)15)
tCK.AVG
ps
9)
tCK.AVG tCK.AVG
ps
16) 17)
tCK.AVG
ps
tDS.BASE DQS falling edge hold time from CK tDSH DQS falling edge to CK setup time tDSS Four Activate Window for 1KB page size products tFAW Four Activate Window for 2KB page size products tFAW CK half pulse width tHP
DQ and DM input setup time Data-out high-impedance time from CK / CK Address and control input hold time
18)19)20) 17) 17) 35) 35) 21)
tCK.AVG tCK.AVG
ns ns ps ps ps
tHZ tIH.BASE
tAC.MAX
--
9)22) 25)23)
Rev. 1.0, 2007-07 07242007-LR08-OZC0
21
Internet Data Sheet
HYS72T1G242EP-[25F/2.5/3/3S/3.7]-C Registerd DDR2 SDRAM Module
Parameter
Symbol
DDR2-667 Min. Max. -- --
Unit
Notes1)2)3)4)5)6)
7)8)
Control & address input pulse width for each input tIPW Address and control input setup time DQ low impedance time from CK/CK DQS/DQS low-impedance time from CK / CK MRS command to ODT update delay Mode register set command cycle time OCD drive mode output delay DQ/DQS output hold time from DQS DQ hold skew factor Average periodic refresh Interval Auto-Refresh to Active/Auto-Refresh command period Precharge-All (8 banks) command period Read preamble Read postamble Active to active command period for 1KB page size products Active to active command period for 2KB page size products Internal Read to Precharge command delay Write preamble Write postamble Write recovery time Internal write to read command delay Exit power down to read command Exit active power-down mode to read command (slow exit, lower power) Exit precharge power-down to any valid command (other than NOP or Deselect) Exit self-refresh to a non-read command Exit self-refresh to read command Write command to DQS associated clock edges
0.6 200 2 x tAC.MIN
tCK.AVG
ps ps ps ns nCK ns ps ps s s ns ns
35) 26) 27) 28)29) 29)30) 31) 24)25) 9)22) 9)22) 35)
tIS.BASE tLZ.DQ tLZ.DQS tMOD tMRD tOIT tQH tQHS tREFI tRFC tRP tRPRE tRPST tRRD tRRD tRTP tWPRE tWPST tWR tWTR tXARD tXARDS tXP tXSNR tXSRD
WL
tAC.MIN
0 2 0
tAC.MAX tAC.MAX
12 -- 12 -- 340 7.8 3.9 -- -- 1.1 0.6 -- -- -- -- 0.6 -- -- -- -- -- -- --
tHP - tQHS
-- -- -- 127.5
tRP + 1 x tCK
0.9 0.4 7.5 10 7.5 0.35 0.4 15 7.5 2 7 - AL 2
tCK.AVG tCK.AVG
ns ns ns
32)33) 32)34) 35)
35)
35)
tCK.AVG tCK.AVG
ns ns nCK nCK nCK ns nCK nCK
35) 35) 35)36)
tRFC +10
200 RL-1
1) For details and notes see the relevant Qimonda component data sheet 2) VDDQ = 1.8 V 0.1V; VDD = 1.8 V 0.1 V. 3) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. 4) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. 5) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode. 6) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 7) The output timing reference voltage level is VTT.
Rev. 1.0, 2007-07 07242007-LR08-OZC0
22
Internet Data Sheet
HYS72T1G242EP-[25F/2.5/3/3S/3.7]-C Registerd DDR2 SDRAM Module
8) New units, `tCK.AVG` and `nCK`, are introduced in DDR2-667 and DDR2-800. Unit `tCK.AVG` represents the actual tCK.AVG of the input clock under operation. Unit `nCK` represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2-400 and DDR2-533, `tCK` is used for both concepts. Example: tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command may be registered at Tm + 2, even if (Tm + 2 - Tm) is 2 x tCK.AVG + tERR.2PER(Min). 9) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(6-10per) of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2-667 SDRAM has tERR(6-10PER).MIN = - 272 ps and tERR(6- 10PER).MAX = + 293 ps, then tDQSCK.MIN(DERATED) = tDQSCK.MIN - tERR(6-10PER).MAX = - 400 ps - 293 ps = - 693 ps and tDQSCK.MAX(DERATED) = tDQSCK.MAX - tERR(6-10PER).MIN = 400 ps + 272 ps = + 672 ps. Similarly, tLZ.DQ for DDR2-667 derates to tLZ.DQ.MIN(DERATED) = - 900 ps - 293 ps = - 1193 ps and tLZ.DQ.MAX(DERATED) = 450 ps + 272 ps = + 722 ps. (Caution on the MIN/MAX usage!) 10) Input clock jitter spec parameter. These parameters are referred to as 'input clock jitter spec parameters' and these parameters apply to DDR2-667 and DDR2-800 only. The jitter specified is a random jitter meeting a Gaussian distribution. 11) These parameters are specified per their average values, however it is understood that the relationship between the average timing and the absolute instantaneous timing holds all the times (min. and max of SPEC values are to be used for calculations ). 12) tCKE.MIN of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during the time period of tIS + 2 x tCK + tIH. 13) DAL = WR + RU{tRP(ns) / tCK(ns)}, where RU stands for round up. WR refers to the tWR parameter stored in the MRS. For tRP, if the result of the division is not already an integer, round up to the next highest integer. tCK refers to the application clock period. Example: For DDR2-533 at tCK = 3.75 ns with tWR programmed to 4 clocks. tDAL = 4 + (15 ns / 3.75 ns) clocks = 4 + (4) clocks = 8 clocks. 14) tDAL.nCK = WR [nCK] + tnRP.nCK = WR + RU{tRP [ps] / tCK.AVG[ps] }, where WR is the value programmed in the EMR. 15) Input waveform timing tDH with differential data strobe enabled MR[bit10] = 0, is referenced from the differential data strobe crosspoint to the input signal crossing at the VIH.DC level for a falling signal and from the differential data strobe crosspoint to the input signal crossing at the VIL.DC level for a rising signal applied to the device under test. DQS, DQS signals must be monotonic between VIL.DC.MAX and VIH.DC.MIN. See Figure 3. 16) tDQSQ: Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output slew rate mismatch between DQS / DQS and associated DQ in any given cycle. 17) These parameters are measured from a data strobe signal ((L/U/R)DQS / DQS) crossing to its respective clock signal (CK / CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC, etc.), as these are relative to the clock signal crossing. That is, these parameters should be met whether clock jitter is present or not. 18) Input waveform timing tDS with differential data strobe enabled MR[bit10] = 0, is referenced from the input signal crossing at the VIH.AC level to the differential data strobe crosspoint for a rising signal, and from the input signal crossing at the VIL.AC level to the differential data strobe crosspoint for a falling signal applied to the device under test. DQS, DQS signals must be monotonic between Vil(DC)MAX and Vih(DC)MIN. See Figure 3. 19) If tDS or tDH is violated, data corruption may occur and the data must be re-written with valid data before a valid READ can be executed. 20) These parameters are measured from a data signal ((L/U)DM, (L/U)DQ0, (L/U)DQ1, etc.) transition edge to its respective data strobe signal ((L/U/R)DQS / DQS) crossing. 21) tHP is the minimum of the absolute half period of the actual input clock. tHP is an input parameter but not an input specification parameter. It is used in conjunction with tQHS to derive the DRAM output timing tQH. The value to be used for tQH calculation is determined by the following equation; tHP = MIN (tCH.ABS, tCL.ABS), where, tCH.ABS is the minimum of the actual instantaneous clock high time; tCL.ABS is the minimum of the actual instantaneous clock low time. 22) tHZ and tLZ transitions occur in the same access time as valid data transitions. These parameters are referenced to a specific voltage level which specifies when the device output is no longer driving (tHZ), or begins driving (tLZ) . 23) Input waveform timing is referenced from the input signal crossing at the VIL.DC level for a rising signal and VIH.DC for a falling signal applied to the device under test. See Figure 4. 24) Input waveform timing is referenced from the input signal crossing at the VIH.AC level for a rising signal and VIL.AC for a falling signal applied to the device under test. See Figure 4. 25) These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge to its respective clock signal (CK / CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC, etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these parameters should be met whether clock jitter is present or not. 26) tQH = tHP - tQHS, where: tHP is the minimum of the absolute half period of the actual input clock; and tQHS is the specification value under the max column. {The less half-pulse width distortion present, the larger the tQH value is; and the larger the valid data eye will be.} Examples: 1) If the system provides tHP of 1315 ps into a DDR2-667 SDRAM, the DRAM provides tQH of 975 ps minimum. 2) If the system provides tHP of 1420 ps into a DDR2-667 SDRAM, the DRAM provides tQH of 1080 ps minimum. 27) tQHS accounts for: 1) The pulse duration distortion of on-chip clock circuits, which represents how well the actual tHP at the input is transferred to the output; and 2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next transition, both of which are independent of each other, due to data pin skew, output pattern effects, and pchannel to n-channel variation of the output drivers.
Rev. 1.0, 2007-07 07242007-LR08-OZC0
23
Internet Data Sheet
HYS72T1G242EP-[25F/2.5/3/3S/3.7]-C Registerd DDR2 SDRAM Module
28) The Auto-Refresh command interval has be reduced to 3.9 s when operating the DDR2 DRAM in a temperature range between 85 C and 95 C. 29) 0 C TCASE 85 C 30) 85 C < TCASE 95 C 31) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device. 32) tRPST end point and tRPRE begin point are not referenced to a specific voltage level but specify when the device output is no longer driving (tRPST), or begins driving (tRPRE). Figure 2 shows a method to calculate these points when the device is no longer driving (tRPST), or begins driving (tRPRE) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the calculation is consistent. 33) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.PER of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2-667 SDRAM has tJIT.PER.MIN = - 72 ps and tJIT.PER.MAX = + 93 ps, then tRPRE.MIN(DERATED) = tRPRE.MIN + tJIT.PER.MIN = 0.9 x tCK.AVG - 72 ps = + 2178 ps and tRPRE.MAX(DERATED) = tRPRE.MAX + tJIT.PER.MAX = 1.1 x tCK.AVG + 93 ps = + 2843 ps. (Caution on the MIN/MAX usage!). 34) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.DUTY of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2-667 SDRAM has tJIT.DUTY.MIN = - 72 ps and tJIT.DUTY.MAX = + 93 ps, then tRPST.MIN(DERATED) = tRPST.MIN + tJIT.DUTY.MIN = 0.4 x tCK.AVG - 72 ps = + 928 ps and tRPST.MAX(DERATED) = tRPST.MAX + tJIT.DUTY.MAX = 0.6 x tCK.AVG + 93 ps = + 1592 ps. (Caution on the MIN/MAX usage!). 35) For these parameters, the DDR2 SDRAM device is characterized and verified to support tnPARAM = RU{tPARAM / tCK.AVG}, which is in clock cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP = RU{tRP / tCK.AVG}, which is in clock cycles, if all input clock jitter specifications are met. This means: For DDR2-667 5-5-5, of which tRP = 15 ns, the device will support tnRP = RU{tRP / tCK.AVG} = 5, i.e. as long as the input clock jitter specifications are met, Precharge command at Tm and Active command at Tm + 5 is valid even if (Tm + 5 - Tm) is less than 15 ns due to input clock jitter. 36) tWTR is at lease two clocks (2 x tCK) independent of operation frequency.
FIGURE 2
Method for calculating transitions and endpoint
FIGURE 3
Differential input waveform timing - tDS and tDS
Rev. 1.0, 2007-07 07242007-LR08-OZC0
24
Internet Data Sheet
HYS72T1G242EP-[25F/2.5/3/3S/3.7]-C Registerd DDR2 SDRAM Module
FIGURE 4
Differential input waveform timing - tlS and tlH
Rev. 1.0, 2007-07 07242007-LR08-OZC0
25
Internet Data Sheet
HYS72T1G242EP-[25F/2.5/3/3S/3.7]-C Registerd DDR2 SDRAM Module
TABLE 17
DRAM Component Timing Parameter by Speed Grade - DDR2-533
Parameter Symbol DDR2-533 Min. DQ output access time from CK / CK CAS A to CAS B command period CK, CK high-level width CKE minimum high and low pulse width CK, CK low-level width Auto-Precharge write recovery + precharge time Minimum time clocks remain ON after CKE asynchronously drops LOW DQ and DM input hold time (differential data strobe) Max. +500 -- 0.55 -- 0.55 -- -- -- -- -- +450 -- 300 + 0.25 -- -- -- -- -- -- ps Unit Notes1)2)3)4)5)
6)7)
tAC tCCD tCH tCKE tCL tDAL tDELAY tDH(base)
-500 2 0.45 3 0.45 WR + tRP
tCK tCK tCK tCK tCK
ns ps ps
8)18)
tIS + tCK + tIH
225 -25 0.35 -450 0.35 -- - 0.25 100 -25 0.2 0.2 37.5 50 MIN. (tCL, tCH) -- 375 0.6 250 2 x tAC.MIN
9)
10)
DQ and DM input hold time (single ended data tDH1(base) strobe) DQ and DM input pulse width (each input) DQS output access time from CK / CK DQS input low (high) pulse width (write cycle) DQS-DQ skew (for DQS & associated DQ signals) Write command to 1st DQS latching transition DQ and DM input setup time (differential data strobe)
11)
tDIPW tDQSCK tDQSL,H tDQSQ tDQSS tDS(base)
tCK
ps
tCK
ps
11)
tCK
ps ps
11)
DQ and DM input setup time (single ended data tDS1(base) strobe) DQS falling edge hold time from CK (write cycle) Four Activate Window period Four Activate Window period Clock half period Data-out high-impedance time from CK / CK Address and control input hold time Address and control input pulse width (each input) Address and control input setup time DQ low-impedance time from CK / CK DQS low-impedance from CK / CK MRS command to ODT update delay Mode register set command cycle time OCD drive mode output delay
11)
tDSH
tCK tCK
ns ns ps ps
13) 12)
DQS falling edge to CK setup time (write cycle) tDSS
tFAW tFAW tHP tHZ tIH(base) tIPW tIS(base) tLZ(DQ) tLZ(DQS) tMOD tMRD tOIT
tAC.MAX
-- -- --
13) 11)
tCK
ps ps ps ns
11) 14) 14)
tAC.MIN
0 2 0
tAC.MAX tAC.MAX
12 -- 12
tCK
ns
Rev. 1.0, 2007-07 07242007-LR08-OZC0
26
Internet Data Sheet
HYS72T1G242EP-[25F/2.5/3/3S/3.7]-C Registerd DDR2 SDRAM Module
Parameter
Symbol
DDR2-533 Min. Max. -- 400 7.8 3.9 -- -- 1.1 0.60 -- -- -- -- 0.60 -- -- -- -- -- -- --
Unit
Notes1)2)3)4)5)
6)7)
Data output hold time from DQS Data hold skew factor Average periodic refresh Interval Average periodic refresh Interval Auto-Refresh to Active/Auto-Refresh command period Precharge-All (8 banks) command period Read preamble Read postamble Active bank A to Active bank B command period Active bank A to Active bank B command period Internal Read to Precharge command delay Write preamble Write postamble Write recovery time for write without AutoPrecharge Internal Write to Read command delay Exit power down to any valid command (other than NOP or Deselect) Exit active power-down mode to Read command (slow exit, lower power) Exit precharge power-down to any valid command (other than NOP or Deselect) Exit Self-Refresh to non-Read command Exit Self-Refresh to Read command Write recovery time for write with AutoPrecharge
tQH tQHS tREFI tREFI tRFC tRP tRPRE tRPST tRRD tRRD tRTP tWPRE tWPST tWR tWTR tXARD tXARDS tXP tXSNR tXSRD
WR
tHP -tQHS
-- -- -- 127.5
ps s s ns ns
14)15) 16)18) 17)
tRP + 1 x tCK
0.9 0.40 7.5 10 7.5 0.25 0.40 15 7.5 2 6 - AL 2
tCK tCK
ns ns ns
14) 14) 14)18)
16)22)
tCK tCK
ns ns
19)
20) 21)
tCK tCK tCK
ns
21)
tRFC +10
200
tWR/tCK
tCK tCK
22)
1) For details and notes see the relevant Qimonda component data sheet 2) VDDQ = 1.8 V 0.1 V; VDD = 1.8 V 0.1 V. 3) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. 4) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. 5) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode. 6) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 7) The output timing reference voltage level is VTT. 8) For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to the WR parameter stored in the MR. 9) The clock frequency is allowed to change during self-refresh mode or precharge power-down mode. 10) For timing definition, refer to the Component data sheet. 11) Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output Slew Rate mis-match between DQS / DQS and associated DQ in any given cycle.
Rev. 1.0, 2007-07 07242007-LR08-OZC0
27
Internet Data Sheet
HYS72T1G242EP-[25F/2.5/3/3S/3.7]-C Registerd DDR2 SDRAM Module
12) MIN (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can be greater than the minimum specification limits for tCL and tCH). 13) The tHZ, tRPST and tLZ, tRPRE parameters are referenced to a specific voltage level, which specify when the device output is no longer driving (tHZ, tRPST), or begins driving (tLZ, tRPRE). tHZ and tLZ transitions occur in the same access time windows as valid data transitions.These parameters are verified by design and characterization, but not subject to production test. 14) The Auto-Refresh command interval has be reduced to 3.9 s when operating the DDR2 DRAM in a temperature range between 85 C and 95 C. 15) 0 C TCASE 85 C 16) 85 C < TCASE 95 C 17) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device. 18) The tRRD timing parameter depends on the page size of the DRAM organization. See Table 2 "Ordering Information for RoHS Compliant Products" on Page 4. 19) The maximum limit for the tWPST parameter is not a device limit. The device operates with a greater value for this parameter, but system performance (bus turnaround) degrades accordingly. 20) Minimum tWTR is two clocks when operating the DDR2-SDRAM at frequencies 200 z. 21) User can choose two different active power-down modes for additional power saving via MRS address bit A12. In "standard active powerdown mode" (MR, A12 = "0") a fast power-down exit timing tXARD can be used. In "low active power-down mode" (MR, A12 ="1") a slow power-down exit timing tXARDS has to be satisfied. 22) WR must be programmed to fulfill the minimum requirement for the tWR timing parameter, where WRMIN[cycles] = tWR(ns)/tCK(ns) rounded up to the next integer value. tDAL = WR + (tRP/tCK). For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to the WR parameter stored in the MRS.
Rev. 1.0, 2007-07 07242007-LR08-OZC0
28
Internet Data Sheet
HYS72T1G242EP-[25F/2.5/3/3S/3.7]-C Registerd DDR2 SDRAM Module
3.3.3
ODT AC Electrical Characteristics
TABLE 18
ODT AC Characteristics and Operating Conditions for all bins DDR2-667 & DDR2-800
This chapter describes the ODT AC electrical characteristics.
Symbol
Parameter / Condition
Values Min. Max. 2
Unit
Note
tAOND tAON tAONPD tAOFD tAOF tAOFPD tANPD tAXPD
ODT turn-on delay ODT turn-on ODT turn-on (Power-Down Modes) ODT turn-off delay ODT turn-off ODT turn-off (Power-Down Modes) ODT to Power Down Mode Entry Latency ODT Power Down Exit Latency
2
nCK
ns ns
1) 1)2) 1) 1) 1)3) 1) 1) 1)
tAC.MIN tAC.MIN + 2 ns
2.5
tAC.MAX + 0.7 ns 2 tCK + tAC.MAX + 1 ns
2.5
nCK
ns ns
tAC.MIN tAC.MIN + 2 ns
3 8
tAC.MAX + 0.6 ns 2.5 tCK + tAC.MAX + 1 ns
-- --
nCK nCK
1) New units, "tCK.AVG" and "nCK", are introduced in DDR2-667 and DDR2-800. Unit "tCK.AVG" represents the actual tCK.AVG of the input clock under operation. Unit "nCK" represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2-400 and DDR2-533, "tCK" is used for both concepts. Example: tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command may be registered at Tm + 2, even if (Tm + 2 - Tm) is 2 x tCK.AVG + tERR.2PER(Min). 2) ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when the ODT resistance is fully on. Both are measured from tAOND, which is interpreted differently per speed bin. For DDR2-667/800, tAOND is 2 clock cycles after the clock edge that registered a first ODT HIGH counting the actual input clock edges. 3) ODT turn off time min is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD, which is interpreted differently per speed bin. For DDR2-667/800, iIf tCK(avg) = 3 ns is assumed, tAOFD is 1.5 ns (= 0.5 x 3 ns) after the second trailing clock edge counting from the clock edge that registered a first ODT LOW and by counting the actual input clock edges.
Rev. 1.0, 2007-07 07242007-LR08-OZC0
29
Internet Data Sheet
HYS72T1G242EP-[25F/2.5/3/3S/3.7]-C Registerd DDR2 SDRAM Module
TABLE 19
ODT AC Characteristics and Operating Conditions for DDR2-533
Symbol Parameter / Condition Values Min. Max. 2 Unit Note
tAOND tAON tAONPD tAOFD tAOF tAOFPD tANPD tAXPD
ODT turn-on delay ODT turn-on ODT turn-on (Power-Down Modes) ODT turn-off delay ODT turn-off ODT turn-off (Power-Down Modes) ODT to Power Down Mode Entry Latency ODT Power Down Exit Latency
2
tCK
ns ns
1)
tAC.MIN tAC.MIN + 2 ns
2.5
tAC.MAX + 1 ns 2 tCK + tAC.MAX + 1 ns
2.5
tCK
ns ns
2)
tAC.MIN tAC.MIN + 2 ns
3 8
tAC.MAX + 0.6 ns 2.5 tCK + tAC.MAX + 1 ns
-- --
tCK tCK
1) ODT turn on time min. is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when the ODT resistance is fully on. Both are measured from tAOND, which is interpreted differently per speed bin. For DDR2-400/533, tAOND is 10 ns (= 2 x 5 ns) after the clock edge that registered a first ODT HIGH if tCK = 5 ns. 2) ODT turn off time min. is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD. Both are measured from tAOFD, which is interpreted differently per speed bin. For DDR2-400/533, tAOFD is 12.5 ns (= 2.5 x 5 ns) after the clock edge that registered a first ODT HIGH if tCK = 5 ns.
Rev. 1.0, 2007-07 07242007-LR08-OZC0
30
Internet Data Sheet
HYS72T1G242EP-[25F/2.5/3/3S/3.7]-C Registerd DDR2 SDRAM Module
3.4
Specifications and Conditions
List of tables defining IDD Specifications and Conditions. * Table 20 "IDD Measurement Conditions" on Page 31 * Table 21 "Definitions for IDD" on Page 32 * Table 22 "IDD Specification for HYS72T1G242EP-[2.5/25F/3/3S/3.7]-C" on Page 33
TABLE 20
IDD Measurement Conditions
Parameter Symbol Note
1)2)3)4)5)
Operating Current 0 IDD0 One bank Active - Precharge; tCK = tCK.MIN, tRC = tRC.MIN, tRAS = tRAS.MIN, CKE is HIGH, CS is HIGH between valid commands. Address and control inputs are SWITCHING, Databus inputs are SWITCHING. Operating Current 1 One bank Active - Read - Precharge; IOUT = 0 mA, BL = 4, tCK = tCK.MIN, tRC = tRC.MIN, tRAS = tRAS.MIN, tRCD = tRCD.MIN, AL = 0, CL = CLMIN; CKE is HIGH, CS is HIGH between valid commands. Address and control inputs are SWITCHING, Databus inputs are SWITCHING.
IDD1
6)
Precharge Standby Current IDD2N All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK.MIN; Other control and address inputs are SWITCHING, Databus inputs are SWITCHING. Precharge Power-Down Current Other control and address inputs are STABLE, Data bus inputs are FLOATING. Precharge Quiet Standby Current All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK.MIN; Other control and address inputs are STABLE, Data bus inputs are FLOATING. Active Standby Current Burst Read: All banks open; Continuous burst reads; BL = 4; AL = 0, CL = CLMIN; tCK = tCK.MIN; tRAS = tRAS.MAX, tRP = tRP.MIN; CKE is HIGH, CS is HIGH between valid commands. Address inputs are SWITCHING; Data Bus inputs are SWITCHING; IOUT = 0 mA.
IDD2P IDD2Q
IDD3N
Active Power-Down Current IDD3P(0) All banks open; tCK = tCK.MIN, CKE is LOW; Other control and address inputs are STABLE, Data bus inputs are FLOATING. MRS A12 bit is set to LOW (Fast Power-down Exit); Active Power-Down Current IDD3P(1) All banks open; tCK = tCK.MIN, CKE is LOW; Other control and address inputs are STABLE, Data bus inputs are FLOATING. MRS A12 bit is set to HIGH (Slow Power-down Exit); Operating Current - Burst Read IDD4R All banks open; Continuous burst reads; BL = 4; AL = 0, CL = CLMIN; tCK = tCKMIN; tRAS = tRASMAX; tRP = tRPMIN; CKE is HIGH, CS is HIGH between valid commands; Address inputs are SWITCHING; Data bus inputs are SWITCHING; IOUT = 0mA. Operating Current - Burst Write All banks open; Continuous burst writes; BL = 4; AL = 0, CL = CLMIN; tCK = tCK.MIN; tRAS = tRAS.MAX., tRP = tRP.MAX; CKE is HIGH, CS is HIGH between valid commands. Address inputs are SWITCHING; Data Bus inputs are SWITCHING; Burst Refresh Current tCK = tCK.MIN., Refresh command every tRFC = tRFC.MIN interval, CKE is HIGH, CS is HIGH between valid commands, Other control and address inputs are SWITCHING, Data bus inputs are SWITCHING.
6)
IDD4W
IDD5B
Rev. 1.0, 2007-07 07242007-LR08-OZC0
31
Internet Data Sheet
HYS72T1G242EP-[25F/2.5/3/3S/3.7]-C Registerd DDR2 SDRAM Module
Parameter Distributed Refresh Current tCK = tCK.MIN., Refresh command every tRFC = tREFI interval, CKE is LOW and CS is HIGH between valid commands, Other control and address inputs are SWITCHING, Data bus inputs are SWITCHING.
Symbol Note
1)2)3)4)5)
IDD5D
Self-Refresh Current IDD6 CKE 0.2 V; external clock off, CK and CK at 0 V; Other control and address inputs are FLOATING, Data bus inputs are FLOATING. IDD6 current values are guaranteed up to TCASE of 85 C max. All Bank Interleave Read Current IDD7 All banks are being interleaved at minimum tRC without violating tRRD using a burst length of 4. Control and address bus inputs are STABLE during DESELECTS. Iout = 0 mA. 1) VDDQ = 1.8 V 0.1 V; VDD = 1.8 V 0.1 V 2) IDD specifications are tested after the device is properly initialized and IDD parameter are specified with ODT disabled. 3) Definitions for IDD see Table 21 4) For two rank modules: for all active current measurements the other rank is in Precharge Power-Down Mode IDD2P
6)
5) For details and notes see the relevant Qimonda component data sheet 6) IDD1, IDD4R and IDD7 current measurements are defined with the outputs disabled (IOUT = 0 mA). To achieve this on module level the output buffers can be disabled using an EMRS(1) (Extended Mode Register Command) by setting A12 bit to HIGH.
TABLE 21
Definitions for IDD
Parameter LOW STABLE FLOATING SWITCHING Description
VIN VIL(ac).MAX, HIGH is defined as VIN VIH(ac).MIN
Inputs are stable at a HIGH or LOW level Inputs are VREF = VDDQ /2 Inputs are changing between HIGH and LOW every other clock (once per 2 cycles) for address and control signals, and inputs changing between HIGH and LOW every other data transfer (once per cycle) for DQ signals not including mask or strobes
Rev. 1.0, 2007-07 07242007-LR08-OZC0
32
Internet Data Sheet
HYS72T1G242EP-[25F/2.5/3/3S/3.7]-C Registerd DDR2 SDRAM Module
TABLE 22
IDD Specification for HYS72T1G242EP-[2.5/25F/3/3S/3.7]-C
HYS72T1G242EP-25F-C HYS72T1G242EP-2.5-C HYS72T1G242EP-3.7-C HYS72T1G242EP-3S-C HYS72T1G242EP-3-C Product Type Units Note1)
Organization 8 GB x72 4 Ranks -2.5
8 GB x72 4 Ranks -2.5F 4040 4120 2550 6650 6290 4350 2910 7010 5110 5200 5900 2690 720 6190
8 GB x72 4 Ranks -3 3620 3700 2260 6000 5640 3910 2620 6220 4520 4610 5460 2400 720 5590
8 GB x72 4 Ranks -3S 3620 3700 2260 6000 5640 3910 2620 6220 4520 4610 5460 2400 720 5550
8 GB x72 4 Ranks -3.7 3210 3260 1950 5190 5120 3390 2310 5410 3930 4020 5100 2090 720 5280 mA mA mA mA mA mA mA mA mA mA mA mA mA
2) 2) 3) 3) 3) 3) 3)4) 3)5) 2) 2) 2) 3)6) 3)6)
2) mA 1) Module IDDis calculated on the basis of component IDDand includes currents of Registers and PLL. ODT disabled. IDD1, IDD4R, and IDD7, are
IDD0 IDD1 IDD2P IDD2N IDD2Q IDD3P_0 (fast) IDD3P_1 (slow) IDD3N IDD4R IDD4W IDD5B IDD5D IDD6 IDD7
4030 4100 2550 6650 6290 4350 2910 7010 5110 5200 5900 2690 720 6190
2) 3) 4) 5) 6)
defined with the outputs disabled. The other rank is in IDD2P Precharge Power-Down Current mode Both ranks are in the same IDDcurrent mode Fast: MRS(12)=0 Slow: MRS(12)=1 IDD5D and IDD6 values are for 0C TCase 85C
Rev. 1.0, 2007-07 07242007-LR08-OZC0
33
Internet Data Sheet
HYS72T1G242EP-[25F/2.5/3/3S/3.7]-C Registerd DDR2 SDRAM Module
4
SPD Codes
This chapter lists all hexadecimal byte values stored in the EEPROM of the products described in this data sheet. SPD stands for serial presence detect. All values with XX in the table are module specific bytes which are defined during production. List of SPD Code Tables * Table 23 "HYS72T1G242EP-[25F/2.5/3/3S/3.7]-C" on Page 34
TABLE 23
HYS72T1G242EP-[25F/2.5/3/3S/3.7]-C
HYS72T1G242EP-2.5-C HYS72T1G242EP-3.7-C 8 GByte x72 4 Ranks (x4) PC2- 4200P- 444 Rev. 1.2 HEX 80 08 08 0E 0B 73 48 00 05 3D 50 06 82 HYS72T1G242EP-3S-C 8 GByte x72 4 Ranks (x4) PC2- 5300P- 555 Rev. 1.2 HEX 80 08 08 0E 0B 73 48 00 05 30 45 06 82 HYS72T1G242EP-3-C 8 GByte x72 4 Ranks (x4) PC2- 5300P- 444 Rev. 1.2 HEX 80 08 08 0E 0B 73 48 00 05 30 45 06 82 Product Type HYS72T1G242EP-25F-C 8 GByte x72 4 Ranks (x4) PC2- 6400P- 555 Rev. 1.2 HEX 80 08 08 0E 0B 73 48 00 05 25 40 06 82
Organization
8 GByte x72 4 Ranks (x4)
Label Code
PC2- 6400P- 666 Rev. 1.2 HEX 80 08 08 0E 0B 73 48 00 05 25 40 06 82
JEDEC SPD Revision Byte# 0 1 2 3 4 5 6 7 8 9 10 11 12 Description Programmed SPD Bytes in EEPROM Total number of Bytes in EEPROM Memory Type (DDR2) Number of Row Addresses Number of Column Addresses DIMM Rank and Stacking Information Data Width Not used Interface Voltage Level
tCK @ CLMAX (Byte 18) [ns] tAC SDRAM @ CLMAX (Byte 18) [ns]
Error Correction Support (non-ECC, ECC) Refresh Rate and Type
Rev. 1.0, 2007-07 07242007-LR08-OZC0
34
Internet Data Sheet
HYS72T1G242EP-[25F/2.5/3/3S/3.7]-C Registerd DDR2 SDRAM Module
HYS72T1G242EP-2.5-C
Organization
8 GByte x72 4 Ranks (x4)
8 GByte x72 4 Ranks (x4) PC2- 6400P- 555 Rev. 1.2 HEX 04 04 00 0C 08 70 01 01 07 07 25 40 3D 50 32 1E 32 2D 02 17 25 05 12 3C
8 GByte x72 4 Ranks (x4) PC2- 5300P- 444 Rev. 1.2 HEX 04 04 00 0C 08 38 01 01 07 07 30 45 50 60 30 1E 30 2D 02 20 27 10 17 3C
8 GByte x72 4 Ranks (x4) PC2- 5300P- 555 Rev. 1.2 HEX 04 04 00 0C 08 38 01 01 07 07 3D 50 50 60 3C 1E 3C 2D 02 20 27 10 17 3C
8 GByte x72 4 Ranks (x4) PC2- 4200P- 444 Rev. 1.2 HEX 04 04 00 0C 08 38 01 01 07 07 3D 50 50 60 3C 1E 3C 2D 02 25 37 10 22 3C
Label Code
PC2- 6400P- 666 Rev. 1.2 HEX 04 04 00 0C 08 70 01 01 07 07 30 45 3D 50 3C 1E 3C 2D 02 17 25 05 12 3C
JEDEC SPD Revision Byte# 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Description Primary SDRAM Width Error Checking SDRAM Width Not used Burst Length Supported Number of Banks on SDRAM Device Supported CAS Latencies DIMM Mechanical Characteristics DIMM Type Information DIMM Attributes Component Attributes
tCK @ CLMAX -1 (Byte 18) [ns] tAC SDRAM @ CLMAX -1 [ns] tCK @ CLMAX -2 (Byte 18) [ns] tAC SDRAM @ CLMAX -2 [ns] tRP.MIN [ns] tRRD.MIN [ns] tRCD.MIN [ns] tRAS.MIN [ns]
Module Density per Rank
tAS.MIN and tCS.MIN [ns] tAH.MIN and tCH.MIN [ns] tDS.MIN [ns] tDH.MIN [ns] tWR.MIN [ns]
Rev. 1.0, 2007-07 07242007-LR08-OZC0
35
HYS72T1G242EP-3.7-C
HYS72T1G242EP-3S-C
HYS72T1G242EP-3-C
Product Type
HYS72T1G242EP-25F-C
Internet Data Sheet
HYS72T1G242EP-[25F/2.5/3/3S/3.7]-C Registerd DDR2 SDRAM Module
HYS72T1G242EP-2.5-C
Organization
8 GByte x72 4 Ranks (x4)
8 GByte x72 4 Ranks (x4) PC2- 6400P- 555 Rev. 1.2 HEX 1E 1E 00 36 39 7F 80 14 1E 0F 51 60 4F 39 3D 2C 35 24 46 24 27 C4 8C 70
8 GByte x72 4 Ranks (x4) PC2- 5300P- 444 Rev. 1.2 HEX 1E 1E 00 06 39 7F 80 18 22 0F 51 60 47 34 3D 28 31 24 3E 22 24 C4 8C 68
8 GByte x72 4 Ranks (x4) PC2- 5300P- 555 Rev. 1.2 HEX 1E 1E 00 06 3C 7F 80 18 22 0F 51 60 47 34 3D 28 31 24 3E 22 23 C4 8C 68
8 GByte x72 4 Ranks (x4) PC2- 4200P- 444 Rev. 1.2 HEX 1E 1E 00 06 3C 7F 80 1E 28 0F 51 60 3F 31 3D 23 2C 24 36 22 24 C4 8C 61
Label Code
PC2- 6400P- 666 Rev. 1.2 HEX 1E 1E 00 06 3C 7F 80 14 1E 0F 51 60 4F 39 3D 2C 35 24 46 24 27 C4 8C 70
JEDEC SPD Revision Byte# 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Description
tWTR.MIN [ns] tRTP.MIN [ns]
Analysis Characteristics
tRC and tRFC Extension tRC.MIN [ns] tRFC.MIN [ns] tCK.MAX [ns] tDQSQ.MAX [ns] tQHS.MAX [ns]
PLL Relock Time
TCASE.MAX Delta / T4R4W Delta
Psi(T-A) DRAM T0 (DT0) T2N (DT2N, UDIMM) or T2Q (DT2Q, RDIMM) T2P (DT2P) T3N (DT3N) T3P.fast (DT3P fast) T3P.slow (DT3P slow) T4R (DT4R) / T4R4W Sign (DT4R4W) T5B (DT5B) T7 (DT7) Psi(ca) PLL Psi(ca) REG TPLL (DTPLL)
Rev. 1.0, 2007-07 07242007-LR08-OZC0
36
HYS72T1G242EP-3.7-C
HYS72T1G242EP-3S-C
HYS72T1G242EP-3-C
Product Type
HYS72T1G242EP-25F-C
Internet Data Sheet
HYS72T1G242EP-[25F/2.5/3/3S/3.7]-C Registerd DDR2 SDRAM Module
HYS72T1G242EP-2.5-C
Organization
8 GByte x72 4 Ranks (x4)
8 GByte x72 4 Ranks (x4) PC2- 6400P- 555 Rev. 1.2 HEX B0 12 1D 7F 7F 7F 7F 7F 51 00 00 xx 37 32 54 31 47 32 34 32 45 50 32 35
8 GByte x72 4 Ranks (x4) PC2- 5300P- 444 Rev. 1.2 HEX 94 12 D1 7F 7F 7F 7F 7F 51 00 00 xx 37 32 54 31 47 32 34 32 45 50 33 43
8 GByte x72 4 Ranks (x4) PC2- 5300P- 555 Rev. 1.2 HEX 94 12 03 7F 7F 7F 7F 7F 51 00 00 xx 37 32 54 31 47 32 34 32 45 50 33 53
8 GByte x72 4 Ranks (x4) PC2- 4200P- 444 Rev. 1.2 HEX 78 12 08 7F 7F 7F 7F 7F 51 00 00 xx 37 32 54 31 47 32 34 32 45 50 33 2E
Label Code
PC2- 6400P- 666 Rev. 1.2 HEX B0 12 14 7F 7F 7F 7F 7F 51 00 00 xx 37 32 54 31 47 32 34 32 45 50 32 2E
JEDEC SPD Revision Byte# 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 Description TREG (DTREG) / Toggle Rate SPD Revision Checksum of Bytes 0-62 Manufacturer's JEDEC ID Code (1) Manufacturer's JEDEC ID Code (2) Manufacturer's JEDEC ID Code (3) Manufacturer's JEDEC ID Code (4) Manufacturer's JEDEC ID Code (5) Manufacturer's JEDEC ID Code (6) Manufacturer's JEDEC ID Code (7) Manufacturer's JEDEC ID Code (8) Module Manufacturer Location Product Type, Char 1 Product Type, Char 2 Product Type, Char 3 Product Type, Char 4 Product Type, Char 5 Product Type, Char 6 Product Type, Char 7 Product Type, Char 8 Product Type, Char 9 Product Type, Char 10 Product Type, Char 11 Product Type, Char 12
Rev. 1.0, 2007-07 07242007-LR08-OZC0
37
HYS72T1G242EP-3.7-C
HYS72T1G242EP-3S-C
HYS72T1G242EP-3-C
Product Type
HYS72T1G242EP-25F-C
Internet Data Sheet
HYS72T1G242EP-[25F/2.5/3/3S/3.7]-C Registerd DDR2 SDRAM Module
HYS72T1G242EP-2.5-C
Organization
8 GByte x72 4 Ranks (x4)
8 GByte x72 4 Ranks (x4) PC2- 6400P- 555 Rev. 1.2 HEX 46 43 20 20 20 20 0x xx xx xx xx 00 FF
8 GByte x72 4 Ranks (x4) PC2- 5300P- 444 Rev. 1.2 HEX 20 20 20 20 20 20 0x xx xx xx xx 00 FF
8 GByte x72 4 Ranks (x4) PC2- 5300P- 555 Rev. 1.2 HEX 43 20 20 20 20 20 0x xx xx xx xx 00 FF
8 GByte x72 4 Ranks (x4) PC2- 4200P- 444 Rev. 1.2 HEX 37 43 20 20 20 20 0x xx xx xx xx 00 FF
Label Code
PC2- 6400P- 666 Rev. 1.2 HEX 35 43 20 20 20 20 0x xx xx xx xx 00 FF
JEDEC SPD Revision Byte# 85 86 87 88 89 90 91 92 93 94 95 - 98 128 255 Description Product Type, Char 13 Product Type, Char 14 Product Type, Char 15 Product Type, Char 16 Product Type, Char 17 Product Type, Char 18 Module Revision Code Test Program Revision Code Module Manufacturing Date Year Module Manufacturing Date Week Module Serial Number Blank for customer use
99 - 127 Not used
Rev. 1.0, 2007-07 07242007-LR08-OZC0
38
HYS72T1G242EP-3.7-C
HYS72T1G242EP-3S-C
HYS72T1G242EP-3-C
Product Type
HYS72T1G242EP-25F-C
Internet Data Sheet
HYS72T1G242EP-[25F/2.5/3/3S/3.7]-C Registerd DDR2 SDRAM Module
5
Package Outlines
FIGURE 5
Package Outline Raw Card Z L-DIM-240-49
This chapter contains the package outlines of the products.
Rev. 1.0, 2007-07 07242007-LR08-OZC0
39
Internet Data Sheet
HYS72T1G242EP-[25F/2.5/3/3S/3.7]-C Registerd DDR2 SDRAM Module
6
Product Type Nomenclature
Qimondas nomenclature uses simple coding combined with some propriatory coding. Table 24 provides examples for module and component product type number as well as the field number. The detailed field description together with possible values and coding explanation is listed for modules in Table 25 and for components in Table 26.
TABLE 24
Nomenclature Fields and Examples
Example for Field Number 1 Micro-DIMM DDR2 DRAM HYS HYB 2 64 18 3 T T 4 64/128 5 0 6 2 7 0 0 8 K A 9 M C 10 -5 -5 11 -A
512/1G 16
TABLE 25
DDR2 DIMM Nomenclature
Field 1 2 3 4 Description Qimonda Module Prefix Module Data Width [bit] DRAM Technology Memory Density per I/O [Mbit]; Module Density1) Values HYS 64 72 T 32 64 128 256 512 5 6 7 8 9 Raw Card Generation Number of Module Ranks Product Variations Package, Lead-Free Status Module Type 0 .. 9 0, 2, 4 0 .. 9 A .. Z D M R U F Coding Constant Non-ECC ECC DDR2 256 MByte 512 MByte 1 GByte 2 GByte 4 GByte Look up table 1, 2, 4 Look up table Look up table SO-DIMM Micro-DIMM Registered Unbuffered Fully Buffered
Rev. 1.0, 2007-07 07242007-LR08-OZC0
40
Internet Data Sheet
HYS72T1G242EP-[25F/2.5/3/3S/3.7]-C Registerd DDR2 SDRAM Module
Field 10
Description Speed Grade
Values -2.5F -2.5 -3 -3S -3.7 -5
Coding PC2-6400 5-5-5 PC2-6400 6-6-6 PC2-5300 4-4-4 PC2-5300 5-5-5 PC2-4200 4-4-4 PC2-3200 3-3-3 First Second
11
Die Revision
-A -B
1) Multiplying "Memory Density per I/O" with "Module Data Width" and dividing by 8 for Non-ECC and 9 for ECC modules gives the overall module memory density in MBytes as listed in column "Coding".
TABLE 26
DDR2 DRAM Nomenclature
Field 1 2 3 4 Description Qimonda Component Prefix Interface Voltage [V] DRAM Technology Component Density [Mbit] Values HYB 18 T 256 512 1G 2G 5+6 Number of I/Os 40 80 16 7 8 9 10 Product Variations Die Revision Package, Lead-Free Status Speed Grade 0 .. 9 A B C F -25F -2.5 -3 -3S -3.7 -5 Coding Constant SSTL_18 DDR2 256 Mbit 512 Mbit 1 Gbit 2 Gbit x4 x8 x16 Look up table First Second FBGA, lead-containing FBGA, lead-free DDR2-800 5-5-5 DDR2-800 6-6-6 DDR2-667 4-4-4 DDR2-667 5-5-5 DDR2-533 4-4-4 DDR2-400 3-3-3
Rev. 1.0, 2007-07 07242007-LR08-OZC0
41
Internet Data Sheet
HYS72T1G242EP-[25F/2.5/3/3S/3.7]-C Registerd DDR2 SDRAM Module
Table of Contents
1 1.1 1.2 2 2.1 3 3.1 3.2 3.3 3.3.1 3.3.2 3.3.3 3.4 4 5 6 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Pin Configuration and Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Speed Grade Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Component AC Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ODT AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Specifications and Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 14 15 16 16 18 29 31
SPD Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Product Type Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Rev. 1.0, 2007-07 07242007-LR08-OZC0
42
Internet Data Sheet
Edition 2007-07 Published by Qimonda AG Gustav-Heinemann-Ring 212 D-81739 Munchen, Germany (c) Qimonda AG 2007. All Rights Reserved. Legal Disclaimer The information given in this Internet Data Sheet shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Qimonda hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Qimonda Office. Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Qimonda Office. Qimonda Components may only be used in life-support devices or systems with the express written approval of Qimonda, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. www.qimonda.com


▲Up To Search▲   

 
Price & Availability of HYS72T1G242EP-3-C

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X